
AD A04 2 125 MARYLAND UN I V COLLEGE PARK COMPUTER SCIENCE CENTER F/Ø tIe/s
EXTRACTION or TOPOLOGICAL INFORMATION FROM DIGITAL IMAGES. (U)
.Ml 77 * ROSEPWELD AF—AFOSR—3271—77

UNCLASS IFIED TR S4T AFOSR—TR—77—O$06 NI.

_ _  

_‘nfl_auii



AFOSR.~~. 7 7 -  0 80 6 ~~ ~~~~~~~~~~~~~~~~~~~

tar ptLbhc r czn4 a~4~ ‘~~
d~*Ir1budo *MiiI%~~

7
“

I

‘— ‘.4

COMPUTER SCIENCE
TECHNTCAL REPORT SERIES

‘
~~~~ 1856~~~~

,

UNWERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

/
/ I L/ (7

A

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
~~ 

-

~ 2~~



ç~ —v

m~:’ /,,;~~ 4,p ~ ,O

• Ca
• V

’
• ~~~~

‘

~ — V—• ’ •~r-~
- -v—-— • •

~~~~~~~~
-•-

~ 
- - - - - . -•. - • - -  .- _ • •V— — ~~~ ~~~~~~~ - V



T R — 5 4 7  June 1977
AFOSR—77—327 1

EXTRACTION OF TOPOLOGICAL INFORMATION

FROM DIGITAL IMAGES

Azriel Rosenfeld
Computer Science Center
University of Maryland
College Park , MD 207 4 2

Approv ~-~ ~or ]. i~ r - leazo ;
d1~~t r ~J ~ L G . i

ABSTRACT

Geographic information is commonly derived from
remote sensor imagery. The images are digitized and seg-
mented into categories of interest , such as terrain or
land use types. The regions resulting from this segmen-
tation process can then be individually labelled , using
connected component analysis or refinements of it.
Polygonal boundary chains can be constructed for each of
these regions, and the topological relationships among
the regions can also be extracted.

This paper describes efficient algorithms for image
segmentation into regions , region labelling , and construc-
tion of polygonal representations of regions. Such al—
gorithins can serve as an interface between digital image
data bases and polygon-based geographic information sys-
tems.
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EXTRACTION OF TOPOLOGICAL INFORMATION FROM DIGITAL IMAGES

1. INTRODUCTION

This paper reviews techniques for ext ract ing regions

and region descriptions from digital images. A digital

image is an array or matrix whose elements represent the

ref lect ivi t ies  of points in the terrain (or in whatever type

of scene gave rise to the image). In the case of

mult ispectral imagery , each “ mul t i—image ” element is a

vector whose components represent ref lectivit ies of the same

poi nt in various spectral bands. To extract region—based

i n f o rmat ion f r om an image , the following steps are generally

necessar y:

a) Segmentation of the image into subsets having

d i f f e r e n t  characteris t ics .

b) Decomposition of each subset into connected

components , and determination of the topological

relations (adjacency , surroundedness) between the

components.

C) Representation of the individual components , e . g . ,

1

________  - - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~ 
•_ :-_

~
•

_ _ __ •___V__ __
~~~

- - 

-

___________________



by boundary chains or other types of polygons .

With each region (= connected component) can then be

associated various types of descriptive information ,

r e l a t i n g  to its spect ra l  and textu ra l cont en t , to its size

and shape , and so on.

The following sections of this paper will deal ,

respectively, with algori thms for image segmentation,

connec ted component decompo sit ion , and boundary

representation of the components. We will use the following

notation and terminology: The elements of an image will be

ca lled points or pjxels; a pixel will be identified by its

position (x,y). The value of a pixel will be called its

gray  level, and will be denoted by f(x,y). For a pixel in a

multi-image , we have a k—tuple of values (f1
(x ,y),...,

fk
(x Py ) ), called the spectral  signa ture  of the p ixel at

(x , y ) .

2.  SEGMENTATION

When we segment an image into subsets of different

types, we are classifying the pixels of the image into

different classes. The basis for classifying a given point

is (in  general)  provided by a collection of property values

that  we measure at the point; the subsets are characterized

by pa r t i cu l a r  combinations of these values. A brief review

of basic segmentation methods wi l l  now be given ; fur ther

2
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informat ion  can be found in Chapter  8 of [3 ] .

2.1 Gray Level Thresholding

If an image consists of l ight  regions on a dark

backg round or vice versa ( e . g . ,  clouds aga ins t sea sur face ,

or water against  land) , we ca n classify its pixels into

“l ight ” and “dark”  classes by simple thresholding.  In other

words , the g ray level f ( x ,y)  at each poin t (x ,y )  is compa red

to a threshold t , and is c l ass i f ied according to whether

f ( x ,y )  ~ t or < t.

If we know the statistics of the light and da rk classes

(e . g . ,  tha t they have Gaussian dis t r ibut ions wi th  given

means and standard deviations) , then we can determine

mathematically whe re to put the threshold t in order to

discriminate  the classes with  minimum error . If the class

statistics are not known , we can decide where to put t by

analyzing the clustering behavior of the image gray levels.

In particular , suppose that we plot how many times each gray

level occurs in the image; this plot is called the gray

level histogram of the image. If this histogram has two

peaks separated by a valley, then the peaks represent the

l ight and dark regions, and they can be best distinguished

by putting the threshold t at the gray level corresponding

to the bottom of the valley.

3
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2.2 Spectral Classification

Just as we can segment an ordinary image into sets of

l igh t and dark pixels based on the single property of gray

level at each pixel , so we can segment a multi-image into

subsets having given spectral characteristics, using the

spectral signature of each pixel as a collection of property

values. This is commonly done in analyzing multispectral

remote sensor imagery ; the subsets or classes may

correspond to land use types , crop types, and so on.

We can th i n k  of the spectral  s ignature (f
1

(x ,y),...,

of the pixel at (x,y) as defining a point in a k—

dimensional space. Thus to classify the pixel , we can

d ivide the space in to reg ions , such that the class to which

~i pixel is assi-~ned is determined by the region into which

its k— imons~ ond loint falls . For example , a k—dimens ional

hy~ierp 1ane , that divides the space into two half—spaces , is

defined by an equation of the form

a1z1
+. .+a

kz t

The pixel whose signature is (f
l
(x,y),...,fk

(x ,y ) )  fa l l s  into

one or the other of these half-spaces according to whether

alfl (x
,y)+...+akfk(x,y ) I t or < t

8ere again , if we know the statistics of the spectral

signatures for the pixels belonging to each class , e.g.,

4
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that they have multivariate Guassian distributions with

given mean vectors and covariance matrices , we can in

pr inciple determine mathematically how the space should be

partitioned in order to minimize the classification error .

If the statistics are not known , we must decide how to

partition the space by analyzing the clustering behavior of

the pixel spectral signatures. For example , if these

signatures form two compact, well-separated clusters in ~he

space, we can conclude that there are two natural classes of

pixels present in the image, and we can discriminate these

classes by partitioning the space , say with a hyperplane , so

that each cluster lies in a different part of the space.

Evidently, this process is exactly analogous to that of gray

level threshold selection ; a threshold is simply a point

that partitions a one—dimensional space (defined by the

simple property of gray level) into two half-spaces.

2 . 3  Texture Discr iminat ion

In order to segment an image into differently textured

regions, it is necessary to make use of pixel properties

whose values depend not only on the gray level of the pixel

itself , but also on the gray levels of nearby pixels. We

can illustrate this by the following simple examples.

Suppose that the image conatains two types of regions

composed of small dark elements on a light background , but

that in one type of region the elements are densely packed ,

5

_—

~

—_



while in the other type they are sparsely scattered. We

cannot distinguish these types of regions by thresholding ,

since this can only discriminate the elements from the

background , but cannot respond to differences in element

density. However , we can make the reg ions d i sc r i mi nab le  by

the simple device of blurring the image , i.e., replacing the

gray  leve l of each point  by the average gray  leve l computed

ove r some neighborhood of tha t  point .  (We ignore here what

happens  at the edges of the image.) Under this process , the

iy  packed regions become gene ra l ly  dark , and the sparse

- l ight , and it is then possible to d i s c r i m i n a t e  the

- -ins by th resho ld ing, as in Section 2.1.

As another  example, suppose that one type of region is

“busier ” than the other -- e.g., that one type contains

small , densely packed dark elements , while the other

c o n t a i n s  larger , less densely  packed elements .  Thus in the

f irst type of region , transitions from light to dark are

very frequent , while in the second type , they are rarer.

Here again , we cannot discriminate the regions by

thresholding , since this only distinguishes the elements

from the background ; nor can we be sure of doing it by

averag ing and th resholding , since the average gray level in

both types of regions may he essentially the same . However ,

we can distinguish the regions by noting that the first type

contains many more light/dark adjacencies than the second .

Thus we can compute a measure of gray level difference at

6
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each point of the image (see Section 2.4), obta in ing a new

array in which high values are more frequent in the first

type of region than in the second . This new array can then

be segmented by averaging and thresholding, as in the

preceding paragraph .

These two examples are representative of a large class

of cases in which two types of regions differ with respect

to the average value of some local property . (In the first

case , the property is simply gray level; in the second case ,

it is gray level difference.) In such cases, the regions

can be discriminated , in principle , by a three-step process

of (a) computing the local property at each point; (b)

averag ing the results over a neighborhood of each point; and

(c) thresholding the resulting array of average local

property values. A wide variety of textural differences

among regions can be discriminated in this way . Note that

in all these cases we are still classifying image points on

the basis of property measurements , though the property

value at a point now depends on the gray levels in a

neighborhood of the point.

2 . 4  Edge Detection and Template Matching

Segmentation need not involve discriminating among

different types of regions in an image; it may instead

involve detecting specific types of local patterns in the

image. For example , one may want to distinguish edge points

7
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(i.e., points where the rate of change of gray level is

high) from non-edge points , or points where some template

closely matches the image from points where it does not

match. Here again , we ar~ c l a s s i f y i n g  points based on the

value of a local property -- the value of the gray level
d i f f e r e n c e , or the degree of match with the template ; in

f ac t, we are th re sho ld ing  the d i f f e r ence  or match value in

order to decide whether or not an edge or pattern is

present.

Local pattern detection is important in a variety of

image anal ysis applications. Examples are the detection of

region boundar ies (e.g., coastlines) or curve—like features

(roads, rivers , lineaments, etc.) on remote sensor imagery;

th is is done us ing local pa tterns corresponding to short

line segments having a range of orientations. A variety of

match measures can be used for local pattern detection; the

deta i l s  wi l l  not be discussed here . Similarly, a variety of

difference operators can be used for edge detection.

2.5 Sequential Methods of Segmentation

In all  of the segmentation techniques discussed up to

now , the image pixels are classified independently of one

another; in other words, the decision made about one point

does not depend on decisions about other points -- though it

may depend on the gray levels of such points. These methods

are often called “parallel” , because the classification

8
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process could , if desired , be car r ied  out for  a l l  pixels

simu l taneously.

Another class of segmen tat ion methods are know n as

seq uen tial , because they do ta~ce adva— ’tage of previous

decis ions when classifying each pixel. A standard example

of this approach is curve tracking, in which , once a curve

is detected at a point, we examine the neighbors of that

point , and decide which of these neighbors c Intinues the

curve ; then repeat the process for these ne. ghbors; and so

on. Here we are still classifying points based on property

values (e.g., degree of match with a line-segment template) ;

but the choice of property (e.g., slope of the template) and

decision criterion (degree of match required for acceptance

of a point) can now depend on results of previous decisions

(e.g., in which direction the curve was headed , and how high

its contrast was). The sequence in which points are

examined also depends , of course , on the r e su l t s  found at

previously examined points.

A more general example of sequential segmentation is

region growing . Here we start with a sing le pixel , or with

a uniform piece of the image (such as a connected component

of constant gray level; see Section 3), and “grow ” a

homogeneous region by successively adding pieces whose

addition does not violate a homogeneity criterion . Thus we

are basically clustering pixels (or collections of them)

9
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based on sim ila r ity of property values; the decisions

depend , at least to some degree , on the sequence in which

the clusters are grown .

Sequential methods of segmentation are potentially

more powerful than parallel methods, since they can take

advantage of information obtained at previous steps in

making subsequent decisions. However , they have a potential

disadvantage with respect to computational cost, because

they require the points of the image to be examined in an

arbitrary sequence, or repeatedly . Parallel methods , on the

other hand , can be implemented in a single , systematic scan

through the image, since they can be applied in any desired

order. We have emphasized simple parallel methods in this

brief review , because they are both more generally

applicable and less computationally costly . Of course ,

simple methods such as those described here will often not

yield perfect segmentations , but they do provide a starting

point for the development of more specialized methods.

3. CONNECTED COMPONENT EXTRACTION

Once an image has been segmented into subsets, we can

further analyze the toplogical properties of these subsets.

In particular , we can break them up into connected

components, and determine the adjacency and surroundriess

relationships that hold among these components . Methods for

10
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carrying out these steps will now be reviewed; for further

details see Chapter 9 of [3], particularly Section 9.1.

3.1 ConnectE-d Components

In a d igi ta l  image , each point (x ,y)  has four

horizontal and vertical neighbors

(x±l,y), (x,y±l)

and four diagonal neighbors

(x~ l,y±l), (x±l,y4)

(We ignore the special case of a point on the edge of the

image.) For any points P,Q, a path from P to Q is a

sequence of points

P = P0,P1,.. ‘~ n 
=

such that P~ is a neighbor of 
~i l ’  

1 ~ i ~ n. Here n is

called the length of the path.

Let S be any subset of the image. We say that the

points P,Q of S are connected in S if there exists a path

from P to Q that consists entirely of points of S. For any

PES,

S~ = {Q~ S I P  and Q are connected in S}

is called a connected component of S. Readily , S is the

union of its connected components, and they are pairwise

11
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disjoint -- in other words, they constitute a partition of

S.

It is important to point out tha t  there are two

versions of the above definitions , depending on whether we

allow as neighbors of a point only its horizontal and

vertical neighbors , or also its diagona l neighbors. If we

do the la tter , then the set whose points are indicated by

~~~~~~ below

*

*

is connected ; if not , th is  set consists of two connected

components , each having a single point.

3 .2  Component Label l ing

A n umber of a lgor i thms have been devised for g iv ing

distinctive labels to the distinct connected components of a

given set S. The most efficient of these algorithms, which

we will now describe , requires-only two systematic scans

through the image to label all the components. We assume

here that the points of S have been specially marked ; for

simplicity , we will refer to these points as l’ s, and to the

points not in S as 0’s.

We scan the image row by row. On the first row, we

assign a distinct label to the l’s in each run of l ’s. For

example , if the row looks like

12
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001100010111

and we are using the numbers 2 ,3,4,... as labels , then th e

resul t  of la bel ing th i s  row is

002200030444

On succeeding rows , we treat each run p of l’ s as follows :

a) If p is adjacent to no rims of l’s on the

preceding row (i.e., no 1 in p is a neigh bor of

any 1 on the preceding row), we give its points

the next available label that  has not ye t been

used .

b) If  p is adjacent  to one run of l’ s, say p ’ , on the

preceding row, we give its points the same label

that was assigned to the points of p ’.

c) If p is adjacent to two or more runs of l’s on the

preceding row, we give its points one of their

labels (say the least one), and we also record the

fact that these labels are all “equivalent ” , i.e.,

they have been assigned to a single connected

component.

When this scan of the image is complete, each point of

S has a label , and no points belonging to different

connected components have the same label; but it is quite

possible that points belonging to the same connected

component have different labels, whose equivalence was not

13
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discovered until later in the scan . To eliminate these

superfluous labels , we process the list of recorded

equivalences , and determine , for each label, the smallest

label (say) that is equivalent to it. We can now scan the

image again , and replace each label by its smallest

equivalent label. After this second scan is finished , the

points of each connected component all have the same label.

Var iations of this algorithm exist in which we need

examine only very small neighborhoods of each point of S,

rather than examining entire runs of points of S. For

example , let the points to the left of and above point P be

B
CP

where P is a point of S. Suppose , for concreteness , that we

allow only horizontal and vertical neighbors. Then we can

assign a label to P according to the following rules:

a) If B = C = 0, give P the next available new label.

b) If B = 1 or C = 1, but not both, give P the same
label as B or C.

c) If B = C = 1, give P the same label as C (say) , and

record the fact (if not already recorded) that the

labels of B and C are equivalent .

This algorithm requires very little processing for each point

P; but during the first scan , it will use many more labels

14
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than the first algorithm . For examp le , in cases like

**
**

**

the first * on each row will get a new label , since

B = C = 0 fo r these *‘~~~~

3 .3  Component P roperties and “Noise C lean ing ”

The component labelling algorithm can also provide , as

by pr~ ñucts , a count of the number of components , and a

m:~asure of the area of (i.e., the number of po ints in ) each

component. In fact , the number of components is just the

number of inequivalent labels that are used , and the area of

a componen t is ju s t the numbe r of time s tha t it s label is

used . Other properties of the components can also readily

be compu ted , such as the i r  per imeters , hei ghts and w idths ,

or their moments of various degrees, by keep ing incrementa l

count of various quantities as the components are being

labeled . The details of these refinements will not be

described here.

If the im~ige has been poorly segmented , there may be

many small “noise” components in the set S, or there may

exist narrow gaps that break up components. Noise

components can be eliminated using an area criterion -- i.e.,
discarding any component whose area is smaller than some

threshold. Alternatively, they can be eliminated by a

15
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“shrinking and reexpanding ” process that operates as

follows: Change all l’ s to 0’s if they have 0’s as

neighbors; then change all 0’s to l’s if they have l’s as

neighbors. This process first shrinks S by erasing its

border points (= points that have neighbors not in S), then

expands S again by adding a border to it. However , parts of

S that are nowhere more than two points wide will disappear

completely under the shrinking , and so cannot be restored by

the expansion . Note that this process eliminates thin ,

elongated parts of S even if they are very long ; thus it

s-,uld be used only if such parts are regarded as noise.

The shrinking and reexpanding can be done in two scans of

the image; or they can be done in a single scan , if larger

neighborhoods of each point are examined (the details will

not be given here)

Gaps in S can be mended by an expanding and reshrinking

process exactly analogous to the shrinking and reexpanding

process just described . Note that this will fill small

holes and thin rrincavities , as well as briding thin gaps.

These processes can be generalized to allow repeated

shrinking and/or expanding, in order to eliminate noise

components or gaps that have widths greater than 2.

3.4 Adjacency

Let S and T be disjoint subsets of an image. We say

that S and T are adjacent if some point of S is a neighbor of

16

C -  : -  - .- • - - .. - - 
- 

-- --~~ — -
~~~ --.,— - - - -  -



some point of T. If an image has been partitioned into

labelled subsets , it is a straightforward matter to

determine which pairs of these subsets are adjacent by

scanning the image and examining the neighborhood of each

labelled point. These adjacency relationships define a

connected graph G whose nodes are the subsets and whose arcs

are adjacencies; we call G the adjacency graph of the given

partition .

An important special case of the adjacency graph arises

w~’en the partition Consists of the connected components of a

given set S and of its complement ~~~~. In this case , it can

be shown that G is a tree. It is s t ra igh t fo rward  to

determine the adjacency relationships in the process of

scanning the image to label the connected components of S

and of ~ (both of which can be labelled simultaneously).

Algorithms have also been devised for constructing the tree

G ex p l i c i t l y  ( e . g . ,  encoded as a str ing of parentheses) in

a single scan of the image; the details will not be given

here.

It should be pointed out that the conclusions in the

preceding paragraph are valid only if we use opposite types

of connectedness for S and for ~ -- i.e., if we allow
diagonal neighbors for one of them , but not for the other.

For example, if we do not allow diagonal neighbors for

either , then in the image

17
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we have four connected components, two in S and two in S,

and the adjacency graph is

A
N

which is not a tree. Many other topological algor ithms

require the same assumption of opposite definitions for S

and ~ -- for example , the border following algorithm to be

given in Section 4.1.

The adjacency relationship considered in this section

is a very simple one ; it does not take into account the

order in which various other sets touch S around its border ,

nor the fact that a given set may touch S several times.

More will be said on this topic when we discuss region

borders in Section 4.1.

3.5 Surroundness

Let S and T be disjoint subsets of an image. We say

that T surrounds S if any path from a point of S to the edge

of the picture must pass through T. (In other words: For

all paths P = 
~O ’~ l’”’’~ n 

= Q such that P is in S and Q is

on the edge of the picture, some P1 must be in T,

18
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1 i n . )

For a given pair of sets S. T, one can determine

whether or not T surrounds S by constructing a border curve

C of T (see Section 4) and testing whether or not some point

of S is inside C. (The many methods of determining whether

or not a point is inside a polygon will not be reviewed

he r e . )  For an a rb i t ra ry  par t i t ion  of an image into sets , it

is tedious to determine all the surroundedness relations ,

ince many pairs of sets must be examined .

The problem of determining all the surroundedness

relations is greatly simplified in the case where the

partition consists of the connected components of S and of

~~~~. It can be shown that whenever a component U of S and a

~2)Tp~nent V of ~ are adjacent , one of them must surround the

other , unless they both touch the edge of the image . (Here

again we must use opposite types of connectedness for S and

~~
; otherwise , the interior squares of a checkerboard all

touch each other , but do not surround each other , and they

are all components if we do not allow diagonal neighbors in

either S or ~.) Let us construct the adjacency tree G for
—

the components of S and S, as in Section 2.4, and mark all

the nodes of G corresponding to components that touch the

edge of the image. For any two components U and V , let u

and v be the corresponding nodes of G. Since in any tree

there is only one path between any two given nodes, it is
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easy to construct the paths from u to edch of tb ’  mark -u

nodes. If v is on all of these paths , then V sur rou nds U ,

and conversely. Thus using G greatly simplifies deti-rrnining

all the surroundedness relations that hold between

components of S and of ~~~~.

4. coMPoNENT REPRESENTATION

Let U be a connected set of points in a digital image ,

so that U consists of a single connected component.

Although it is connected , U can still have a very complicat~~

sh-lpe , and it may also have many holes —- i.e., there may

be many components  of ~i (the complement of U ) that U

surrounds. Thus U does not necessarily have a simple

description .

The standard approach to describing a connected set U

is to specify its border (the points where it is adjacent to

or to the edge of the image) by a set of curves. Note

that many curves may be required , since U may have many

holes. In this section we describe algorithms for tracking

or “following” the borders of U (along which it meets

various components of ti) and constructing these curves. For

simplicity , we will assume that U does not touch the edge of

the image. Further details on the material in this section

can be found in Chapter 9 of [31.

The digital curve that represents a given border of U
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is a jolygon , defined by sequences of “unit vectors”

corrvsponding to the steps from point to point around the

border. One can also aj~j~roximate a (digital) curve by a

poly gon , using some error criterion to define how closely

the sides of the polygon must fit the curve . Polygonal

approximation technique s will not be considered further here.

A set U can also be represented in other ways , not

involving ~ts borders. For example , U can be represented by

a “skeleton ” consi sting of the centers and radi i  of the

mi~.ima1 squares (say) that are centered at the points of U

and contained in U. This representation is usually not as

economical as one based on borders , but it has computational

advantages in certain cases (e.g., it facilitates

constructing unions and intersections of sets). Additional

information about skeletons can be found in Chapter 9 of

[3]; they will, not be considered further here.

4. 1 Border Following

Let U and V be subsets of a digital image. The V—

border of U, denoted ~~~ is the set of points of U that

have points of V as neighbors. Even if U and V are both

connected , Uv need not be connected , since V may touch U in

many places.

On the other hand, let U be connected , and let V be a

connected component of iJ that is adjacent to U; then U~ is
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a “closed curve” (we will not define this term precisely

here). The same is true if we take S to be any set and let

U be a component of S and V component of ~ tha t  is ad j acen t

to U. Once again , in these definitions , we must use

opposite types of connectedness for U and V (i.e., for S and

~). We shall refer to the points of U as l’s and to the

points of V as 0’s.

We now describe an algorithm,called BF , for visiting

all the points of Uv in sequence. Suppose, for

concreteness , that we allow diagonal neighbors for U but not

fo r V. BF assumes tha t  we are i n i t i a l l y  given a pair of

horizontally or vertically neighboring points u,v with u = 1

and v = 0. It first checks that u has some neighbor in U;

if not , U = ~u} is a single point , and there is no border

to follow. Otherwise , BF proceeds to construct a sequence

of such point pairs (u,v) (u0,v0),...,(un,vn) by operating

as follows:

a) Let the neighbors (horizontal , vertical , and

diagonal) of 
~~~ 

in (say) clockwise order starting

with v1, be w1,w2,...,w8.

b) Let w
3 
be the first of the w ’s that lies in U.

(There must be one, since as we shall see, u~~1 is

a neighbor of u
~
; if i 0, we have already ruled

out the case where u0 has no neighbor in U).

c) Take w~ as u~.4.1 and as v~~1.
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d) Repeat steps (a-c) until u0 is found again (say as

U
m

)
~~ 

provided that v
0 

is one of the w ’s that are

examined when appl y ing step (b )  to urn.

If we use diagonal neighbors for V rather than U, we must

modif y BF as fol lows: At step (b) , let w~ be the f i r st of

the w ’s that lies in U and is a horizontal or vertical

neighbo r of u
1. If wJ_ 1 0, take w~ as u

~+1 and wJ_ 1 as

v , ; if w. = 1, take w. as u. and w. as v-
i+l j—l j—l i+l j—2 i+l

Successive u ’s fou nd by BF are connected to one another

in the U sense , and successive v ’s are con nected to one

a nother in the V sense. Also , each pair (u ,v
~

) is a

horizontally or vertically adjacent pair of points , so that

the u ’s a l l  belong to U
v l and the v ’s to V

~~
. The proof that

BF a lways  works is rather d i f f i c u l t, and will not be given

here. BF cannot stop as soon as it encounters U0, since it

may have to pass through u0 twice , if U is th in  at u
0 

(e.g.,

[~~
*uo*V

~*1).

A number of variations on BF are possible. One of them

follows the “cracks” between U and V; here each “crack” is

defined by a pair of points (u,v) in U and V, respectively.

This algorithm finds the same u ’s as BF, but it may stay at

some of them for several successive steps, as it moves

through a succession of neighboring V ’s (w’s in BF that have

value 0). The details of this and of other algorithms for
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border following will not be given here.

Algorithms like BF will follow the border between U and

any given V. As pointed out earlier , if U has holes , it

will have borders with several different V’ s. These borders

may have points in common , or one of them may even be

contained in another (e.g., if U is a simple closed curve)

We ca n use BF to fol low all the borders ; but some care is

necessary in marking the borders that have al -eady been

fol lowed , to insure  that  borders not yet followed are not

incorrectly excluded from further consideration .

Incidentally, BF follows hole borders (= borders with V’s

such that U surrounds V) counterclockwise , and outer borders

clockwise; this is a result of our arbitrary decision to use

a clockwise ordering of the neighbors in step (a).

If the image has been segmented into several types of

regions , and each of these has been labelled distinctively,

then when we follow the borders of U, we can check at each

border point P just which region(s) U is adjacent to at P.

We can thus construct an oriented multigraph representing

• 
the adjacency sequences that occur around each border. The

details of this process will not be considered further here.

4.2 Chain Coding and Object Reconstruction

-~ Since successive u’s found by BF are (horizontal,

vertical , or diagonal) neighbors, we can describe the border

24
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traced by BF as a succession of moves from neighbor to

neighbor. Let us identify the eight neighbors of a point

(*) by numbers 0,l,...,7 as follows :

3 2 1
4 * 0
5 6 7

(mnemonic: The ith neighbor is the one in direction 45i°,

where angles are measured counterclockwise from the positive

x—axjs) . Thus the succession of BF’s moves can be

represented by a sequence of 3—bit numbers. Such a sequence

is called a chain code. A review of chain cod ing can be

found in [1].

If we are given the chain codes of the borders of a set

U, we can reconstruct U (as a set of l’s in a digital

image), provided that we are also given , for each border

an initial pair of points (u ,v) with u in U and v in V. The

reconstruction process is as follows: Mark the points u, v

as 1, 0, respectively. The chain code defines which

neighbor of u = v0 is the next border point u1. Taking the

neighbors of u0 in clockwise order starting with v0, let v1

be the neighbor immediately preceding v1. Mark u1,v1 as

1,0, respectively; also mark all the neighbors of u0 between

V
0 
and v1 as 0. (The diagonal neighbors are marked only if

we are using diagonal neighbors in U; otherwise they are

left blank.) Repeat the process, with (u1,v1) in place of

(u0,v0), and continue in this way until the 
chain is
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f in i shed , which brings the border back to u0. This process

marks all the points of U as l’s, and all the points of Vu

as U’ s.

When all of the borders and “coborders ” of U have been

marked in this way, we can “fill in” the interior of U

using a row-by-row scan of the image. The filling-in

process is based on the observation that any inter ior  poin t

of U must belong to a horizontal run of interior points ,

having border points at its ends. Thus as we scan row by

row , whenever we find a 1, we change blanks to l’ s as we

move to the r ight, but stop if we reach a 0. When the scan

is complete , all of U will be marked with l’s. If desired ,

we can mark all of U with 0’s in the same scan.

4.3 One-Pass Chain Coding

BF extracts borders one at a time , and it also requires

access to the image in an arbitrary sequence, since the

borders are arbitrary curves. In this section we describe

an algorithm for simultaneously constructing the chain codes

of all borders of all objects in the course of a single row-

by-row scan of the image.

The algorithm operates as follows: On the top row of

the image, it creates a chain code of the form 0O...0 for

each run of object points; these correspond to the tops

of objects, followed clockwise. On any subsequent row, we
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already have a set of chains (possibly empty) that meet the

preced ing row ; we assume tha t  we know which end of which  ru n

corresponds to each end of each of these chains.

We now compare the positions of the runs on the current

row (n) with those on the preceding row (n-l) .

a) If p is a run on row n that is not adjacent to any

run on row n-l , we initiate a new chain for p, just

as we did for each run on the first row.

b) If p is a run on row n—i that is not adjacent to any

run on row n , we create a chain of the form

44.. .4, corresponding to the bottom of the run , and

link it to the chain ends associated with the ends

of the run (i.e., if these chains are K and ,~~~,

at the right and left ends of p respectively, we

join them to form K44...4A). These chain

ends have now been joined together and need no

longer be tracked .

C) If run p on row n—i is adjacent to rows

on row n , we extend p ’s chain ends to join the left

end of p with the left end of p1, and the right end

• of p with the right end of For example , in the

situation

**** ** .-‘ r~“1 “2
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if the chains associated with the left and right

ends of p are K and A , we adjoin 001 to the

beginning of K , and 445 to the end of A . Thus

the beginning of the chain 001K is now associated

with the left end of p2, and the end of the chain

X 4 4 5  with the r igh t  end of p2.

In addition , we create new chains

corresponding to the border segments at the bottom

of p between successive Pt ’s; these are all of the

form 344.. .45. For example, in the case

illustrated above , we create the chain 34445 , and

associate its beginning with the left end of

and its end with the right end of p1.

d) Similarly, if runs 
~l’•~~•’~ r 

on row n—i are

adjacent to run p on row n , we extend the chains

corresponding to the left end of p1 and the right

end of ‘~r 
to join them with the left and right ends

of p, respectively. For example , in the situation

** 2p

if the chains associated withe the left end of p1

and right end of p2 are~~ and A , respectively,

we adjoin 007 to the beginning of K , and 700 to

the end of A. Thus the beginning of chain 007K

is now associated with the left end of p1 and the

28
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end of chain -‘70 0 with its right end .

In addition , we join up the chains associated

wi th the rema in in g ends of 
~l’” ’’~r ’ 

u s i n g  cha in

segments corresponding to the bo rde r segments at

the top of p between the p
1
’s ; these are a l l  of the

form 700.. .01. For example, in the case

illustrated above , if p , v are the chains  associated

with the r igh t  end of p1 and left end of

respectively, we link them to form the chain

p7000lv. The end of p and beginning of v have now

been joined together and need no longer be tracked.

%then the row by row scan of the image is complete, this

process will have created chain codes of all the object

borders in the image . Of course, we should also save the

locations of a pair of adjacent object and background points

at the start of each chain , so that the objects can be

reconstructed from the chains. Note that a final border

chain may be the result of linking together many different

pieces, since the tracking of the border may have begun at

many places; thus we may have saved many point pairs that

turn out to be on the same border , and we can discard the

superfluous ones.

As in Section 4.1, an alternative algorithm for one-

scan border chain code construction can be devised that
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looks only  at a small  nei ghborhood of each obj ect point ,

rather than at entire runs of object points. The details of

such an algorithm will not be given here; they can be found

in [2]

One could also devise an algor ithm tha t  creates an

image of all the object borders in a single row-by-row scan ,

given the chain codes and the initial point pairs. This

would require the chain codes to be stored in pieces ,

starting at each locally highest part of each border , and

with an initial point pair for each such part. The use of

such a storage scheme for chain codes should facilitate

efficient conversion from chain code to digital image form

and vice versa.

5. CONCLUDING REMARKS

This paper has described some basic algorithms for

extracting object border descriptions from a digital image .

The image is segmented into subsets, these are analyzed into

connected components , and the closed—curve borders between

pairs of the components are tracked , using either a border-

• - 
- following or row-by-row process. The reconversion from

object borders to segmented digital image (array of 0’s and

l’s) was also discussed . Algorithms such as those described

here play a central role in interfacing digital image data

with polygonal region descriptions.
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